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The properties of best nonlinear approximations with respect to a generalized
integral norm on an interval are studied. A necessary condition for an approxima­
tion to be locally best is obtained. The interpolatory properties of best approxima­
tions are related to the dimension of a Haar subspace in the tangent space. A
sufficient condition for an approximation to be best only to itself is given for a
class of norms including the L. norms, 1 < p < 00. A sufficient condition for the
set of points at which the given approximated function and an approximant
agree to be of positive measure is given. The results are applied to approximation
by exponential families Vn : in the case of L. approximation, 1 < p < 00,

degenerate approximations are best only to themselves and the error of a best
approximation is either identically zero or has 2n sign changes.

Let r be a continuous nonnegative function, r(O) = O. Let J denote the
integral on [a:, ,8]. For g E qa:, ,8], define

N(g) = f reg)·

Let F be an approximating function with parameter A = (al , ..• , an) taken
from a parameter space P, a subset of n-space, such that F(A, .) E qa:, ,8]
for all A E P. The approximation problem is: given fE qa:, ,8], to find a
parameter A* E P minimizing e(A) = N(f - F(A, .» over P. Any such
parameter A* is called best and F(A*, .) is called a best approximation.

The problem of linear approximation with respect to a r-norm has been
studied by Motzkin and Walsh [7], who required that ret) = r( -t) and
that r have a continuous second derivative. Motzkin later studied a more
general problem in [12]. The problem of rational approximation with respect
to a r-norm has been studied by the author [2], and the results of this paper
are generalizations of the results of that paper. That paper, in turn, owed
much to the paper of Cheney and Goldstein [10] on mean square rational
approximation.
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NECESSARY CONDITIONS FOR LoCAL MINIMA

135

We assume henceforth that T has a continuous first derivative when
restricted to (- 00, 0] or to [0, (0). T may not have a derivative at zero, but
has a left-hand derivative T _'(0) and a right-hand derivative T /(0) at zero.
We assume further that sgn(T'(t» = sgn(t) for t oF O. For example, in the
case of L p approximation, 1 < p < 00, ret) = I t !P, sgn(r'(t» = sgn(t) for
t oF O. It will be convenient to define TO'(O) = O.

Let us define

(
A B) = r Jr(f - F(A + A.B, .» - Jr(f - F(A, .»

Tj, A~m- A. '

= lim f T(f - F(A + A.B, .» - T(f - F(A, .» . (1)
A~O+ A.

Let a neighborhood of A in n-space be in P. Then a necessary condition
for A to be a local minimum of e is that Tj(A, B) ~ 0 for all B. This makes
it desirable to have a more convenient formula for 7](A, B). We define a
parameter norm,

II A II = max{1 ai I: 1 < i < n}.

DEFINITION. Let there exist continuous partial derivatives Fk of F with
respect to parameter component ak of A. Define

n

D(A, B, x) = L: bkFiA, x),
k=l

R(A, B, x) = F(A + B, x) - F(A, x) - D(A, B, x),

and let R(A, B, x) = 0(11 B II) as II B 11---+ O. Let a neighbourhood of A in
n-space be in P. We say F is locally linear at A.

A similar definition is used in [8] and a similar condition is assumed in
[6, 306-307].

DEFINITION. Let Z(A) = {x:f(x) - F(A, x) = O} and

,.....,Z(A) = [ex, ,8] ,....., Z(A).

LEMMA 1. Let F be locally linear at A and the zeros of D(A, E, .) be a set
of measure zero, then

Tj(A, B) = f - r'(f - F(A, .» D(A, B, .)
NZ(A)

- f r~Sgn(D(A.B•.»(O) D(A, B, .).
Z(A)



136 CHARLES B. DUNHAM

Proof There is jL > 0 such that F(A + AB, -) E C[a:,,8] for 0 ~ A ~ jL.

The integrand in the formula (1) for 7J(A, B) is bounded above in absolute
value by JK:

J = sup{1 T'(f(X) - F(A + AB, x))I: 0 ~ A ~ jL, a: ~ x ~ ,8},

K = sup{1 F(A + AB, x) - F(A, X)I/A: 0 ~ A ~ jL, a: ~ x ~ ,8}.

If we denote by I 1"(0)1 the quantity max{L'(O), l'+'(O)} then I 1" I is upper
semicontinuous. The quantity we take the supremum of in getting J is then
upper semicontinuous and the supremum is taken on a compact set, so there
is a point where the supremum is attained, hence J is finite.

(F(A + AB, x) - F(A, X))/A = (D(A, AB, x) + R(A, AB, X))/A

= D(A, B, x) + O(A)/A,

so K is the supremum of a continuous function on a compact set and hence
is finite. We have JK finite, so by the Lebesque dominated convergence
theorem,

(A B) = Jlim T(f - F(A + AB, .)) - T(f - F(A, .))
7J '.\-->0+ A

= f :>t T(f - F(A + AB, '))].=0+ .

If
f(x) - F(A, x) =1= 0, D(A, B, x) =1= 0,

the integrand is -T'(f(X) - F(A, x)) D(A, B, x). If f(x) - F(A, x) = 0,
D(A, B, x) =1= 0 the integrand is

l' T(-D(A, AB, x) - R(A, AB, x)) - 1'(0)
.\~W+ A

= lim T(A[-D(A, B, x) - R(A, AB, X)jA]) - 1'(0)
.\-->0+ A

= -T~8gn(D(A.B.X»(0) D(A, B, x).

As the set of zeros of D(A, B, .) form a set of measure zero, we do not need
the integrand on this set.

INTERPOLATING PROPERTIES OF BEST ApPROXIMATIONS

The linear space {D(A, B, .): BEEn} is the tangent space of F at A, which
is used extensively by Meinardus and Schwedt [6, 307 ff] under different
notation. In view of the theorem to be proved shortly, it is important to
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know how large a Haar subspace this linear space contains and in particular
whether it is a Haar subspace. Unfortunately, this is known only for very
few F. The author has obtained such results for several more F [4].

DEFINITION. A linear subspace of dimension m of C[ex,,8] is a Haar
subspace on the open interval (ex, ,8) if every non-zero element of the subspace
has at most m - 1 zeros on (ex, ,8).

DEFINITION. A continuous function g is said to change sign at x if x is
a zero of g interior to [ex,,8] and for all sufficiently small E > 0,
g(x - E) . g(x + E) < O.

The following result can be proven by elementary arguments (see, for
example, the remark in [7, 1228]).

LEMMA 2. Let L be a Haar subspace of dimension m on (ex,,8) then for
any p < m interior points there is a nonzero element of L changing sign at
the p points with no other zeros in (ex, ,8).

THEOREM 1. Let F be locally linear at A. Let A be a local minimum of e
andf =1= F(A, '). If{D(A, B, .): BEEn} contains a Haar subspace ofdimension
m on (ex, ,8), then

(i) f - F(A, -) has m sign changes, or

(ii) max{- T _'(0), T +'(O)} > 0 and p.(Z(A)) > O.

Proof Suppose f - F(A,') has sign changes only at p points,
Xl , ... , X p , P < m, and one of the following is true:

(i) 7'(0) = 0,

(ii) p.(Z(A)) = O.

By Lemma 2 there exists B such that D(A, B,') changes sign only at
Xl , ... , X p and has no other zeros in (ex, ,8). As 7'(f - F(A, .)) changes sign
only at these points, we can assume that D(A, B, .) is of the same sign as
7'(f - F(A, .)) except possibly on Z(A) or {ex, ,8}. We have by Lemma 1,

7](A, B) = f - 7'(f - F(A, .)) D(A, B, .).
-zeAl

The integrand is negative and continuous on (ex,,8) t'oo.J Z(A), hence
7](A, B) < 0 and A is not a local minimum of e.

It should be noted that interpolation results have also been obtained by
Rice [11, Chap. 13]. These involve different hypotheses and an entirely
different approach.
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ORTHOGONAL COMPLEMENTS

In this section we show that some common nonlinear families have
orthogonal complement of zero. The results are applicable to the theory
to be developed in the following section.

Let BM[a, ,8] be the bounded measurable functions on [a, ,8]. A family S
of continuous functions is said to have orthogonal complement of zero (in
BM[a, ,8]) if the only elements g of BM[a, ,8] for which

f gh = °
for all h E S are elements vanishing almost everywhere.

DEFINITION. A set of powers is called fundamental on a set S of functions,
if for any g E S, there is a sequence {h k } of linear combinations of the powers
such that II g - hk II", ---+ 0.

EXAMPLES.

1. The powers {I, x, x2, ... } are fundamental in C[a, ,8] by the Weierstrass
theorem.

2. The even powers {I, x 2, x4, } are fundamental in C[O, a].

3. The odd powers {x, x 3, x 5, } are fundamental in eZ[O, a], where
ezra, ,8] is the functions continuous on [a, ,8] which vanish at zero.

4. The powers {x, x 2, x 3, ... } are fundamental in ezra, ,8].

LEMMA 3. Let {xk(O), xk(l) ,...} be fundamentalin CZ[a, ,8]. For g E BM[a, ,8],
the conditions

f gxk(i) = 0, i = 0,1,... ,

imply that g = °almost everywhere.

Proof The convergence of a sequence with respect to the sup norm on
[a, ,8] implies convergence with respect to the L I norm on [ex, ,8]. Also the
continuous functions vanishing at zero are dense in LI[a, ,8]. We have for h
a linear combination of powers

Jg2 = Jgh + Jg(g - h) ~ sup{1 g(x)l: a ~ X ~ ,8} II g - hili'

hence f g2 = °and g = °almost everywhere.



NONLINEAR MEAN APPROXIMATION

THEOREM 2. Let if1 have a Taylor series expansion

00

if1(x) = L akxk
k~O

139

about zero with radius of convergence R > 0. Let the coefficients ofa sequence
of integer powers fundamental in CZ[a,,8] be nonzero. Let ft > 0, then the
orthogonal complement of{if1(Sx): -ft < S < ft} is zero.

Proof Let Jgif1(Sx) = °for -ft < S < ft. We have

for I S I < RJmax{1 a I, I ,8 I}, hence for such S,

and since ak(;) =f= °
f gxk(i) = 0, i = 0, 1,....

By the previous lemma, g = °almost everywhere. A consequence of the
theorem is that for any common transcendental function if1 which is analytic
at zero, the orthogonal complement of {if1(Sx): -ft < S < ft} is zero.

ApPROXIMATIONS WHICH ARE BEST ONLY TO THEMSELVES

In standard cases of Chebyshev approximation, in particular alternating
approximation [11, Chap. 7], every approximation is best to a function
which is not itself. In even the simplest cases of nonlinear L'j! approximation,
1 ~ P < 00, this may be no longer true. Particular cases where some
approximations are best only to themselves are given in [1, 227; 2; 10, 239]
and in the section on exponential approximation in this paper.

It would be desirable to have a theory telling what approximations are
best only to themselves. A start at such a theory follows in this section,
where we show that certain approximations are best only to themselves.
To complete the theory, we would have to show that the remaining approxi­
mations were best to some other function. This has been done by Cheney
and Goldstein [10, 238] for mean square approximation by ordinary rational
functions.
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DEFINITION. The sum space of an approximation F(A, .) is the set of
functions h such that F(A, .) + 1Ih is an approximant for all I >. I sufficiently
small.

EXAMPLE. Let r/J be a continuous function and let

An element of Vir/J) with one of a1 , ... , an zero has {l/J(ax): a real} in its sum
space and is an element of Vn- 1(r/J). Such an element is called degenerate.

THEOREM 3. Let T'(O) = O. If the sum space ofF(A, .) has 0 as its orthogo­
nal complement in C[ex, fil], F(A, -) is a best approximation only to itself.

Proof Let F(A, .) be best for fE C[ex, ,8]. Let h be in the sum space of
F(A, J Let

1(11) = f T(f - F(A, .) - M),

then

1'(0) = :11 f T(f - F(A, .) - M)h=o = f :>. T(f - F(A, .) - M)h=o

= f 'T'(f - F(A ·»h.

Since F(A, .) is best, 1'(0) must be zero for all h in the sum space, hence
T'(f - F(A, .» is in the orthogonal complement of the sum space and is,
therefore, zero.

Remark. The proof shows that F(A, .) cannot even be locally best to
f#F(A, .).

We have for r/J(x) = exp(x), z!;(x) = log(l + x), r/J(x) = sin(x), z!;(x) =
cos(x), that a degenerate element of Vn(z!;) is best only to itself if T'(O) = O.

COROLLARY. Let T'(O) = O. Let z!; be a continuous function and I be an
interval such that the orthogonal complement of {r/J(Sx): S E I} in qex, fil] is
zero. Let Pn(f) = inf{N(f - g): g E Vn(r/J)}. If a best approximation exists to
fin Vn(r/J) andf¢ Vn(r/J) then Pn(f) > Pn+l(f).

Proof If Pn(f) = Pn+l(f) then a best approximation g in Vn is a best
approximation in Vn+l' The sum space of gin Vn+l is {r/J(ax): a real}, hence
the orthogonal complement is zero, and by Theorem 3, g = f
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A result quite close to the corollary was obtained by Hobby and Rice [5,
98-99], who used a property much more restrictive than the orthogonal
complement being zero. If T does not have a derivative at zero, F(A, .) can
be best to f even though the orthogonal complement of the sum space of
F(A, .) is zero. For examples, see the papers [1, 3, 9] on the L 1 case. We can,
however, show that Z(A) must have positive measure.

POSITIVE MEASURE

THEOREM 4. Let the orthogonal complement in BM[0:, mof the sum space
of F(A, .) be zero. F(A, .) can be best to f only if Z(A) is a set of positive
measure.

Proof Suppose Z(A) is of zero measure, then by arguments used in the
proof of the preceding theorem,

f T'(f - F(A, ·»h = 0

for all h in the sum space. Hence T'(f - F(A, .» is in the orthogonal
complement of the sum space. As T'(f - F(A, .» is continuous on
{x:f(x) - F(A, x) > O} and on {x:f(x) - F(A, x) < O} and is bounded,
T'(f - F(A, .» E BM[o:, f3]. Hence T'(f - F(A, .» = 0 almost everywhere,
which contradicts p,(Z(A» = O.

COROLLARY. Let the orthogonal complement in BM[o:, f3] of the sum space
ofF(A, .) be zero. Let F(A, .) be analytic, then if F(A, .) is best to analytic f,
f ==- F(A, -).

EXPONENTIAL ApPROXIMATION

In this section we consider approximation by Vn(exp) , that is,

n

F(A, x) = L ak exp(an+kx ),
k~1

An approximation which can be expressed in this form with at least one of
a1 , ... , an equal to zero is called degenerate. It has {exp(ax): a real} in the sum
space and this has 0 as its orthogonal complement in BM[o:, f3] by Theorem 2.
When T'(O) = 0, we have by Theorem 3 that degenerate F(A, .) is best only
to itself, and the corollary to Theorem 3 is applicable. It is shown by
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Meinardus and Schwedt [6, 313] that {D(A, B, .): BE E2..} is a Haar subspace
of dimension 2n if F(A, .) is nondegenerate. By Theorem 1 and 4 we have the
following theorem.

THEOREM 5. Let F(A, .) be best in Vn(exp) to f Let 7"(0) = 0 or f be
analytic. Then f = F(A, -) or f - F(A, .) has 2n sign changes.

Results on L 1 approximation are found in [3, 9].
It should be noted that Professor D. W. Kammler of Southern Illinois

University, Carbondale, will have papers appearing on mean exponential
approximation.
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